
WGAN

2017.7.24

Towards Principled Methods for Training Generative Adversarial Networks

ICLR 2017

Wasserstein GAN

Improved Training of Wasserstein GANs

 (arXiv 2017.1.17)

(arXiv 2017.5.9)

(arXiv 2017.5.29)

01 Problem

Despite their success, there is little to no theory explaining the unstable behavior of GAN
training.

𝑧~𝑝(𝑧)
𝑔𝜃(𝑧)

𝑃𝑔

Always,𝑔𝜃 is a neural network parameterized by θ , and the main difference is how 𝑔𝜃 is trained.

𝑃𝑟

MLE min(KL divergence) 𝐾𝐿(𝑃𝑟| 𝑃𝑔 = 𝑃𝑟𝑙𝑜𝑔
𝑃𝑟

𝑃𝑔

𝐽𝑆(𝑃𝑟| 𝑃𝑔 =
1

2
𝐾𝐿(𝑃𝑟| 𝑃𝐴 +

1

2
𝐾𝐿(𝑃𝑔| 𝑃𝐴 𝑃𝐴 =

𝑃𝑟 + 𝑃𝑔

2

02

The reason of GANs success at producing reallistically looking images is due to the switch
from the traditional maximum likelihood approaches.

𝐿 𝐷, 𝑔𝜃 = 𝐸𝑥~𝑃𝑟
𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

[log(1 − 𝐷(𝑥))] 𝐷∗ 𝑥 =
𝑃𝑟(𝑥)

𝑃𝑟 𝑥 + 𝑃𝑔(𝑥)

𝐿 𝐷∗, 𝑔𝜃 = 2𝐽𝑆(𝑃𝑟| 𝑃𝑔 − 2𝑙𝑜𝑔2

In practice, as the discriminator gets better, the updates to the generator get consistently
worse.

The original GAN paper argued that this issue arose from saturation, and switched to
another similar cost function that doesn’t have this problem.

Problem

03

log(1 − 𝐷(𝐺(𝑧)))

−log(𝐷(𝐺(𝑧)))

Problem

04

However, even with this new cost function, updates tend to get worse and optimization
gets massively unstable.

Problem

𝑃1 𝑃2

𝑃1 𝑥 ≠ 0&𝑃2 𝑥 = 0
𝑃1 𝑥 ≠ 0&𝑃2 𝑥 ≠ 0

𝑃1 𝑥 = 0&𝑃2 𝑥 ≠ 0
𝑃1 𝑥 = 0&𝑃2 𝑥 = 0

JS = log
𝑃2

1
2

(𝑃2 + 0)
= log2

05

The only way this can happen is if the distributions are not continuous, or they have
disjoint supports.

Problem

Their supports lie on low dimensional manifolds.
support

manifold

measure

1

2

3

Lemma, if the dimension of Z is less than the one of X, g(Z)
will be a set of measure 0 in X.

06 Problem

Theorem 1 If two distributions 𝑃𝑟and 𝑃𝑔have support contained on two disjoint
compact subsets M and P respectively, then there is a smooth optimal discrimator 𝐷∗

 :
that has accuracy 1 and 𝛻𝑥𝐷∗ 𝑥 = 0 for all x ∈ MUP

Theorem 2 Let 𝑃𝑟and 𝑃𝑔 be two distributions that have support contained in two closed
manifolds and P that don’t perfectly align and don’t have full dimension. We further
assume that 𝑃𝑟and 𝑃𝑔 are continuous in their respective manifolds, meaning that if there is
a set A with measure 0 in M, then 𝑃𝑟 𝐴 = 0(and analogously for 𝑃𝑔). Then, there exists an
optimal discriminator 𝐷∗that has accuracy 1 and for almost any x in M or P, D is smooth in
a neighborhood of x and 𝛻𝑥𝐷∗ 𝑥 = 0 .

07 Problem

In practice, if we just train D till convergence, its error will go to 0.

08

𝐷 = sup
𝑥∈𝒳

𝐷 𝑥 +||𝛻𝑥𝐷(𝑥)||2

Theorem 3 (Vanishing gradients on the generator)

Let 𝑔𝜃: 𝒵~𝒳 be a differentiable function that induces a distribution 𝑃𝑔. Let 𝑃𝑟 be the
real data distribution. Let D be a differentiable discriminator. If the conditions of
Theorems 2.1 or 2.2 are satisfied, 𝐷 − 𝐷∗ < 𝜖,and 𝐸𝑧~𝑝(𝑧) 𝐽𝜃𝑔𝜃(𝑧) 2

2 ≤ 𝑀2, 𝑡ℎ𝑒𝑛

Corollary

lim
||𝐷−𝐷∗||→0

𝛻𝜃𝐸𝑧~𝑝(𝑧) log(1 − 𝐷(𝑔𝜃(𝑧))) = 0

Under the same assumptions of Theorem 3

𝛻𝜃𝐸𝑧~𝑝(𝑧)[log(1 − 𝐷(𝑔𝜃(𝑧)))]
2

< 𝑀
𝜖

1 − 𝜖

Problem

09 Problem

10
𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔𝐷 𝑔𝜃 𝑧 |𝜃0

𝐷∗ =
𝑃𝑟

𝑃𝑔𝜃0
+𝑃𝑟

𝐾𝐿(𝑃𝑔𝜃
| 𝑃𝑟 = 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃

(𝑥)

𝑃𝑟(𝑥)
 = 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃0

(𝑥)

𝑃𝑟(𝑥)
− 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃

(𝑥)

𝑃𝑔𝜃0
(𝑥)

= −𝐸𝑥~𝑃𝑔𝜃
𝑙𝑜𝑔

𝐷∗(𝑥)

1 − 𝐷∗(𝑥)
− 𝐾𝐿(𝑃𝑔𝜃

||𝑃𝑔𝜃0
) = −𝐸𝑧~𝑝(𝑧) 𝑙𝑜𝑔

𝐷∗(𝑔𝜃 𝑧)

1 − 𝐷∗(𝑔𝜃 𝑧)
− 𝐾𝐿(𝑃𝑔𝜃

||𝑃𝑔𝜃0
)

𝛻𝜃𝐾𝐿(𝑃𝑔𝜃
| 𝑃𝑟 |𝜃=𝜃0

= −𝛻𝜃𝐸𝑧~𝑝 𝑧 𝑙𝑜𝑔
𝐷∗ 𝑔𝜃 𝑧

1 − 𝐷∗ 𝑔𝜃 𝑧
|𝜃=𝜃0

− 𝛻𝜃𝐾𝐿(𝑃𝑔𝜃
||𝑃𝑔𝜃0

)

-logD

11

= 𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔
𝐷∗ 𝑔𝜃 𝑧

1 − 𝐷∗ 𝑔𝜃 𝑧
|𝜃=𝜃0

 𝐸𝑧~𝑝(𝑧) 𝛻𝜃log(1 − 𝐷∗(𝑔𝜃(𝑧)))|𝜃=𝜃0
= 𝛻𝜃2𝐽𝑆(𝑃𝑔𝜃

||𝑃𝑟)|𝜃=𝜃0

= 𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧) + 𝛻𝜃𝐸𝑧~𝑝 𝑧 log(1 − 𝐷∗ 𝑔𝜃 𝑧)

𝐸𝑧~𝑝 𝑧 −𝛻𝜃𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧)|𝜃=𝜃0
= 𝛻𝜃[𝐾𝐿(𝑃𝑔𝜃

| 𝑃𝑟 − 2𝐽𝑆(𝑃𝑔𝜃
| 𝑃𝑟)]|𝜃=𝜃0

The JSs are in the opposite sign, which means they are pushing for the distributions to be
different, which seems like a fault in the update.

-logD

12 -logD

The gradient norms grow quickly.

Furthermore, the noise in the curves
shows that the variance of the gradients
is also increasing.

All these gradients lead to updates that
lower sample quality
notoriously.

13

The KL appearing in the equation is 𝐾𝐿(𝑃𝑔||𝑃𝑟),not the one equivalent to maximum likelihood.

This KL assigns an extremely high cost to generating fake looking samples, and an extremely
low cost on mode dropping, JS is symetrical so it shouldn’t alter this behaviour.

𝑃𝑔 𝑥 → 0𝑃𝑟 → 1 𝑃𝑔 𝑥 log
𝑃𝑔(𝑥)

𝑃𝑟(𝑥)
 →0

𝑃𝑔 𝑥 → 1𝑃𝑟 → 0 𝑃𝑔 𝑥 log
𝑃𝑔(𝑥)

𝑃𝑟(𝑥)
 →+∞

-logD

𝐸𝑧~𝑝 𝑧 −𝛻𝜃𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧)|𝜃=𝜃0
= 𝛻𝜃[𝐾𝐿(𝑃𝑔𝜃

| 𝑃𝑟 − 2𝐽𝑆(𝑃𝑔𝜃
| 𝑃𝑟)]|𝜃=𝜃0

14 MLE

𝑥1, 𝑥2, … , 𝑥𝑚 𝐿 = 𝑃𝐺(𝑥𝑖; 𝜃)

𝑚

𝑖=1

𝜃∗ = argmax
𝜃

 𝑝𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖=1

⟺ argmax
𝜃

𝑙𝑜𝑔 𝑝𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖=1

𝐷𝐾𝐿(𝑃| 𝑄 = 𝑃 𝑖 𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

𝐷𝐾𝐿(𝑃| 𝑄 = 𝑝 𝑥 𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)

+∞

−∞

z Genetive

model

𝐺 𝑧 = 𝑥
𝑝𝑧

𝑃𝐺(𝑥; 𝜃) 𝑃𝑑𝑎𝑡𝑎 𝑥

15 MLE

= argmax
𝜃

 𝑙𝑜𝑔𝑃𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖

 ≈ argmax
𝜃

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝑃𝐺(𝑥; 𝜃)]

⟺ argmax
𝜃

 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃 𝑑𝑥 − 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝑑𝑎𝑡𝑎 𝑥 𝑑𝑥

=argmax
𝜃

 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥;𝜃

𝑃𝑑𝑎𝑡𝑎 𝑥
𝑑𝑥

argmin
𝜃

𝐾𝐿(𝑃𝑑𝑎𝑡𝑎||𝑃𝐺(𝑥; 𝜃))

16 Comparison

17 WGAN Wasserstein GAN (arXiv 2017.5.9)

Earth-Mover (EM) distance 𝑊(𝑃𝑟 , 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

𝐸 𝑥,𝑦 ~𝛾 𝑥 − 𝑦

∏(𝑃𝑟 , 𝑃𝑔)denotes the set of all joint distributions γ 𝑥, 𝑦 whose marginal are respectively 𝑃𝑟 and 𝑃𝑔.
Intuitively, γ 𝑥, 𝑦 indicates how much “mass”must be transported from x to y in order to
transform the distributions 𝑃𝑟 into the distribution 𝑃𝑟. The EM distance is the “cost”of the
optimal transport plan.

𝐾𝐿(𝑃| 𝑄 = 𝑝 𝑥 𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)

+∞

−∞

 𝑝~𝑁(0, 𝜖3) 𝑞~𝑁(𝜖, 𝜖3) 𝐾𝐿(𝑃| 𝑄 =
1

2𝜖

𝑊(𝑃𝑟, 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

 𝑑 𝑥, 𝑦 𝑝𝑑𝛾(𝑥, 𝑦)

1/𝑝

= (inf
𝛾

𝐸 𝑑(𝑥, 𝑦)𝑝)1/𝑝

18 EM

a

b

c

d

e

f

0.4

0.2

0.4

0.3

0.6

0.1
𝑚𝑖𝑛 𝑑 𝑠, 𝑡 ∗ 𝑚(𝑠, 𝑡)

𝜋(𝑠,𝑡)

𝑑 𝑠, 𝑡 𝑚(𝑠, 𝑡)

 𝑚 𝑠, 𝑡

𝑡

= 𝑎 𝑠 ∀𝑠 𝑚 𝑠, 𝑡

𝑠

= 𝑏 𝑡 ∀𝑡

19 Comparison

𝑊(𝑃0, 𝑃𝜃) = |𝜃|

𝐽𝑆(𝑃0, 𝑃𝜃) =
𝑙𝑜𝑔2𝑖𝑓𝜃 ≠ 0
0𝑖𝑓𝜃 = 0

𝐾𝐿(𝑃0, 𝑃𝜃) = 𝐾𝐿 𝑃𝜃 , 𝑃0 =
+∞𝑖𝑓𝜃 ≠ 0
0𝑖𝑓𝜃 = 0

𝑊(𝑃𝑟 , 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

𝐸 𝑥,𝑦 ~𝛾 𝑥 − 𝑦

However, the infimum is highly intractable.

20 Transformation

𝑊(𝑃𝑟, 𝑃𝜃) = sup
||𝑓||≤1

𝐸𝑥~𝑃𝑟
𝑓 𝑥 − 𝐸𝑥~𝑝𝜃

[𝑓(𝑥)]

Kantorovich-Rubinstein[22] duality tells us that

𝑓 𝑥1 − 𝑓(𝑥2) ≤ 𝐾|𝑥1 − 𝑥2|

𝑊(𝑃𝑟, 𝑃𝜃) =
1

𝐾
sup

||𝑓||≤𝐾

𝐸𝑥~𝑃𝑟
𝑓 𝑥 − 𝐸𝑥~𝑝𝜃

[𝑓(𝑥)] We replace ||𝑓||𝐿 ≤ 1 for||𝑓||𝐿 ≤ 𝐾

If we have a parameterized family of functions 𝑓𝑤 𝑤∈𝑊 that are all K-Lipschitz for some K,
 we could consider solving the problem

𝐾𝑊(𝑃𝑟, 𝑃𝜃) ≈ max
𝑤:|𝑓𝑤|𝐿≤𝐾

𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))]

Clamp the weights to a fixed box (say 𝒲 = [−0.01,0.01]𝑙) after each gradient update.

21 Theory

The corollary tells us that learning by minimizing the EM distance makes sense (at least in
theory) with neural networks.

Corollary Let 𝑔𝜃 be any feedforward neural network parameterized by θ , and p(z) a prior
 over z such that 𝐸𝑧~𝑝(𝑧) 𝑧 < ∞ (e.g. Gaussian, uniform, etc.). then assumption is satisfied and
therefore 𝑊(𝑃𝑟 , 𝑃𝜃) is continuous everywhere and differentiable almost everywhere.

Furthermore, we could consider differentiating 𝑊(𝑃𝑟 , 𝑃𝜃) by back-proping via estimating
𝐸𝑧~𝑝(𝑧) 𝛻𝜃𝑓𝑤(𝑔𝜃(𝑧)) .

max
𝑤:|𝑓𝑤|𝐿≤𝐾

𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))] 𝛻𝜃𝑊 𝑃𝑟, 𝑃𝜃 = −𝐸𝑧~𝑝(𝑧) 𝛻𝜃𝑓(𝑔𝜃(𝑧))

22 Framework

23 Comparison

The discriminator learns very quickly to
distinguish between fake and real, and as
expected provides no reliable gradient
information.

The critic, however, can't saturate, and
converges to a linear function that gives
remarkably clean gradients everywhere.

critic=𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))]

The fact that the EM distance is continuous and
dierentiable a.e. means that we can (and should)
train the critic till optimality. The argument is
simple, the more we train the critic, the more
reliable gradient of the Wasserstein we get, which
is actually useful by the fact that Wasserstein is
dierentiable almost everywhere.

24 Summary

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the clipping
parameter is large, then it can take a long time for any weights to reach their limit, thereby
making it harder to train the critic till optimality. If the clipping is small, this can easily lead
to vanishing gradients when the number of layers is big, or batch normalization is not used
(such as in RNNs).

Comparison

1 2

3

4

判别器最后一层去掉sigmoid 生成器和判别器的loss不取log

每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c

不要用基于动量的优化算法（包括momentum和Adam），推荐RMSProp，SGD也行

25 Set

BGD SGD MBGD Momentum

𝑔′ =
1

𝑚
𝛻𝜃 𝐿(𝑓 𝑥𝑖 , 𝜃𝑡 , 𝑦𝑖)

𝑖

 𝑣𝑡+1 = 𝑎𝑣𝑡 − 𝜂𝑔′ 𝜃𝑡+1=𝜃𝑡 + 𝑣𝑡

Adagrad 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂𝑔𝑡,𝑖 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

𝐺𝑡,𝑖𝑖 + 𝜖
𝑔𝑡,𝑖 𝑔𝑡,𝑖

′ = 𝛻𝜃𝐿(𝑓 𝑥𝑖 , 𝜃𝑡,𝑖 , 𝑦𝑖)

𝐺𝑡是一个对角矩阵，第𝑖行对角元素𝑒𝑖𝑖为过去到当前第𝑖个参数𝜃𝑖的梯度平方和 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝐺𝑡 + 𝜖
⨀𝑔𝑡

 Adadelta RMSprop Adam

http://blog.csdn.net/heyongluoyao8/article/details/5
2478715

Nesterov Momentum

26 Results

The evolution of the WGAN estimate (3) of the EM
distance during WGAN training for all three
architectures.

27 Results

28 Results

29 WGAN-GP Improved Training of Wasserstein GANs

𝐿 𝐷 = −𝐸𝑥~𝑃𝑟
𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

𝐷(𝑥) 𝐿 𝐺 = −𝐸𝑥~𝑃𝑔
𝐷(𝑥) | 𝛻𝑥𝐷 𝑥 |

𝑝
< 𝐾, ∀𝑥 ∈ 𝒳

30 WGAN-GP

[| 𝛻𝑥𝐷 𝑥 |𝑝 − 𝐾]2

𝐿 = −𝐸𝑥~𝑃𝑟
𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

𝐷 𝑥 + 𝜆𝐸𝑥 ~𝒳[| 𝛻𝑥 𝐷 𝑥 |𝑝 − 1]2

𝑥𝑟~𝑃𝑟 , 𝑥𝑔~𝑃𝑔, 𝜖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1]

𝑥 = 𝜖𝑥𝑟 + (1 − 𝜖)𝑥𝑔

31 WGAN-GP

32 WGAN-GP

Penalize the norm of the critic’s gradient with respect to each input independently, and
not the entire batch.

No critic batch normalization
Layer normalization

33 WGAN-GP

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

2017.7.24

arXiv 2016.9.15
 2017.5.25

Image-to-Image Translation with Conditional Adversarial Networks

arXiv 2016.11.21

01 Loss Functions

Pixel-wise loss functions such as MSE,
minimizing MSE encourages finding
pixel-wise averages of plausible
solutions which are typically overly-
smooth and thus have poor perceptual
quality.

02

The MSE-based solution appears overly smooth
due to the pixel-wise average of possible
solutions in the pixel space,

While GAN drives the reconstruction towards the
natural image manifold producing perceptually
more convincing solutions.

Loss Functions

03 SRGAN

In training, 𝐼𝐿𝑅
 is obtained by applying a Gaussian-filter to 𝐼𝐻𝑅 followed by a downsampling

operation with downsampling factor r. For an image with 𝐶 color channels, we describe 𝐼𝑆𝑅,
𝐼𝐿𝑅 by a real-valued tensor of size 𝑊 × 𝐻 × 𝐶 and 𝐼𝑆𝑅 by r𝑊 × 𝑟𝐻 × 𝐶 respectively.

Our ultimate goal is to train a generating function G that estimates for a given LR input image
its corresponding HR counterpart.

A feed-forward CNN 𝐺𝜃𝐺
 𝜃𝐺= 𝑊1:𝐿, 𝑏1:𝐿

𝜃 𝐺 = argmin
𝜃𝐺

1

𝑁
 𝑙𝑆𝑅(𝐺𝜃𝐺

𝐼𝑛
𝐿𝑅 , 𝐼𝑛

𝐻𝑅)

𝑁

𝑛=1

Given training images 𝐼𝑛
𝐻𝑅,𝑛 = 1, … , 𝑁 with corresponding 𝐼𝑛

𝐿𝑅, 𝑛 = 1, … , 𝑁

min
𝜃𝐺

max
𝜃𝐷

𝐸𝐼𝐻𝑅~𝑝𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅) 𝑙𝑜𝑔𝐷𝜃𝐷
(𝐼𝐻𝑅) + 𝐸𝐼𝐿𝑅~𝑝𝐺(𝐼𝐻𝑅) log(1 − 𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅)))

04 Perceptual loss function

𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑙𝑜𝑠𝑠

+ 10−3𝑙𝐺𝑒𝑛
𝑆𝑅

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙𝑙𝑜𝑠𝑠

The pixel-wise MSE loss is calculated as 𝑙𝑀𝑆𝐸
𝑆𝑅 =

1

𝑟2𝑊𝐻
 (𝐼𝑥,𝑦

𝐻,𝑅 − 𝐺𝜃𝐺
 𝐼𝐿𝑅

𝑥,𝑦)2

𝑟𝐻

𝑦=1

𝑟𝑊

𝑥=1

 While achieving particularly high PSNR, solutions of MSE optimization problems often
lack high-frequency content which result in perceptually unsatisfying solutions with overly
smooth textures.

Content loss

We define the VGG loss based on the ReLU activation layers of the pre-trained 19 layer VGG
network𝜙𝑖,𝑗 indicates the feature map obtained by the j-th convolution(after activation) feature
map before the i-th maxpooling layer within the VGG19 network, which we consider given.

𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑙𝑜𝑠𝑠

+ 10−3𝑙𝐺𝑒𝑛
𝑆𝑅

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙𝑙𝑜𝑠𝑠

+ 2 ∙ 10−8𝑙𝑇𝑉
SR

regularization𝑙𝑜𝑠𝑠

05

Adversarial loss

𝑙𝐺𝑒𝑛
𝑆𝑅 = −𝑙𝑜𝑔𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅))

𝑁

𝑛=1

For better gradient behavior we minimize −𝑙𝑜𝑔𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝐿𝑅) instead of log[1 − 𝑙𝑜𝑔𝐷𝜃𝐷
(𝐺𝜃𝐺

𝐼𝐿𝑅)]

𝑙𝑉𝐺𝐺 𝑖,𝑗
𝑆𝑅 =

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
 (𝜙𝑖,𝑗(𝐼

𝐻𝑅)𝑥,𝑦−𝜙𝑖,𝑗(𝐺𝜃𝐺
(𝐼𝐿𝑅))𝑥,𝑦)2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

Regularization Loss

𝑙𝑇𝑉
𝑆𝑅 =

1

𝑟2𝑊𝐻
 𝛻𝐺𝜃𝐺

(𝐼𝑅)𝑥,𝑦

𝑟𝐻

𝑦=1

𝑟𝑊

𝑥=1

06 Batch Normalization Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

ICML 2015

07 ReLUs Delving Deep into Rectifiers: Surpassing Human-Level
 Performance on ImageNet Classification ICCV 2015

𝑓 𝑦𝑖 =
𝑦𝑖 𝑖𝑓𝑦𝑖 > 0
𝑎𝑖𝑦𝑖 𝑖𝑓𝑦𝑖 ≤ 0

If 𝑎𝑖 is a small and fixed value, PReLU
becomes the Leaky ReLU.

PReLU introduces a very small number of
extra parameters. The number of extra parameters is equal to the total number of
channels, which is negligible when considering the total number of weights.

08 ReLUs

𝜕𝜀

𝜕𝑎𝑖
=

𝜕𝜀

𝜕𝑓(𝑦𝑖)

𝜕𝑓(𝑦𝑖)

𝜕𝑎𝑖
𝑦𝑖

PReLU can be trained using backpropagation and optimized simultaneously with other
layers.

𝜕𝑓(𝑦𝑖)

𝜕𝑎𝑖
=

0𝑖𝑓𝑦𝑖 > 0
𝑦𝑖 𝑖𝑓𝑦𝑖 < 0

We adopt the momentum method when updating 𝑎𝑖:

∆𝑎𝑖≔ 𝜇∆𝑎𝑖 + 𝜖
𝜕𝜀

𝜕𝑎𝑖
 μ is the momentum and ϵ is the learning rate

It is worth noticing that we do not use weight decay (𝐿2 regularization) when updating 𝑎𝑖. A
weight decay tends to push 𝑎𝑖 to zero, and thus biases PReLU toward ReLU.

𝜕𝜀

𝜕𝑓(𝑦𝑖)
is the gradient propagated from the deeper layer.

The gradient of the activation is given by:

09

10 Results

11 Results

12 Results

13 CGAN-Image

Image-to-Image Translation with Conditional Adversarial Networks

arXiv 2016.11.21

 GANs are generative models that learn a
mapping from random noise vector z to output
image 𝑦: 𝐺: 𝑧 → 𝑦, In contrast, conditional GANs
learn a mapping from observed image 𝑥 and
random noise vector 𝑧, to 𝑦: 𝐺: {𝑥, 𝑧} → 𝑦.

14

𝐿𝐶𝐺𝐴𝑁 𝐺, 𝐷 = 𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦) 𝑙𝑜𝑔𝐷(𝑥, 𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))

𝐺∗ = argmin
𝐺

max
𝐷

𝐿𝐶𝐺𝐴𝑁(𝐺, 𝐷)

To test the importance of conditioning the discrimintor, we also compare to an unconditional
variant in which the discriminator does not observe 𝑥:

𝐿𝐺𝐴𝑁 𝐺, 𝐷 = 𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦) 𝑙𝑜𝑔𝐷(𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))

Previous approaches to conditional GANs have found it beneficial to mix the GAN objective
with a more traditional loss, such as L2 distance. The discriminator’s job remains unchanged,
but the generator is tasked to not only fool the discriminator but also to be near the ground
truth output in an L2 sense.

CGAN-Image

15

𝐿𝐿1 𝐺, 𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) 𝑦 − 𝐺(𝑥, 𝑧) 1

𝐺∗ = argmin
𝐺

max
𝐷

𝐿𝐶𝐺𝐴𝑁 𝐺, 𝐷 + 𝜆𝐿𝐿1(𝐺)

Without z, the net could still learn a mapping from x to y, but would produce deterministic
outputs, and therefore fail to match any distribution other than a delta function.

Past conditional GANs have acknowledged this and provided Gaussian noise z as an input
to the generator, in addition to 𝑥.

In initial experiments, we did not find this strategy effective – the generator simply learned
to ignore the noise.

CGAN-Image

16

Despite the dropout noise, we observe very
minor stochasticity in the output of our nets.

We provide noise only in the form of dropout,
applied on several layers of our generator at
both training and test time.

Dropout: A Simple Way to Prevent Neural Networks from Overtting JMLR 2014

U-Net: Convolutional Networks for Biomedical Image Segmentation

International Conference on Medical Image Computing & Computer-assisted Intervention 2015

CGAN-Image

17 Generator

In such a network, the input is passed through a series of
layers that progressively downsample, until a bottleneck layer,
at which point the process is reversed.

Specifically, we add skip connections between each
layer I and layer 𝑛 − 𝑖, where 𝑛 is the total number of
layers.

𝐶𝑘 denote a Convolution-BatchNorm-ReLU layer
with k filters

𝐶𝐷𝑘 denotes a Convolution-BatchNorm-Dropout-ReLU
layer with a dropout rate of 50%.

18 Architecture

Encoder C64_C128_C256_C512_C512_C512_C512_C512

C512_C512_C512_C512_C512_256_C128_C64 Decoder

After the last layer in the decoder, a convolution is applied to map to the number of output
channels (3 in general, except in colorization, where it is 2), followed by a tanh function. As an
exception to the above notation, Batch-Norm is not applied to the first C64 layer in the
encoder. All ReLUs in the encoder are leaky, with slope 0.2, while ReLUs in the decoder are not
leaky.

U-Net decoder CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128

70×70discriminator C64_C128_C256_C512

1×1discriminator 256×256discriminator C64-C128-C256-C512-C512-C512 C64-C128

16×16discriminator C64-C128

19 Results

20 Results

21 Results

