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01 Problem

Despite their success, there is little to no theory explaining the unstable behavior of GAN
training.

Z
~p(2) 96(2) . p—— B

Always, gg is a neural network parameterized by 6, and the main difference is how gy is trained.

o P
MLE = - min(KL divergence) KL(P,||P,) = fp,,zogF
9

1 1
JS(Pr||Pg) = 5 KL(P:|IPa) + 5 KL(Py||Pa) Pa=-=




02 Problem

The reason of GANSs success at producing reallistically looking images is due to the switch
from the traditional maximum likelihood approaches.

P (x)
P.(x) + B, (%)

——

D*(x) =

L(D, gg) = Ex-p,[logD(x)] + Ex-p,llog(1—D(x))]

L(D*, g9) = 2JS(P||F;) — 2log2

In practice, as the discriminator gets better, the updates to the generator get consistently
worse.

The original GAN paper argued that this issue arose from saturation, and switched to
another similar cost function that doesn’ t have this problem.
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03 Problem

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our

experiments.
for number of training iterations do
for & steps do
e Sample minibatch of m noise samples {z(l): e z(m)} from noise prior p,(2).
x(™} from data generating distribution

e Sample minibatch of m examples {:1:(1)

Pdata (:13 ) .
e Update the discriminator by ascending its stochastic gradient:

Vo~ 3" [loeD (2 +10g (1= D (¢ (29)))].

m <

1=

end for
e Sample minibatch of m noise samples {z(l), e z(m)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, -3 tog (1- D (6 (29))).
i=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.
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log(1 - D(G(2)))

v

—log(D(G(2)))
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However, even with this new cost function, updates tend to get worse and optimization
gets massively unstable.

Pi(x) = 0&P,(x) =0 <« P1(x) = 0&P,(x) # 0
1\X) = H(X) =

Pi(x) # 0 &P,(x) # 0 —> P;(x) # 0&P,(x) =0

P,
JS = log = log?2
5 (P2 +0)




05 Problem

The only way this can happen is if the distributions are not continuous, or they have
disjoint supports.

Their supports lie on low dimensional manifolds.
0 support

: Lemma ... , if the dimension of Z is less than the one of X, g(2)
€ manifold . :
will be a set of measure 0 in X.
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06 Problem

Theorem 1 If two distributions P.and P, have support contained on two disjoint

compact subsets M and P respectively, then there is a smooth optimal discrimator D*:
that has accuracy 1 and V,.D*(x) = 0 for all x € MUP

Theorem 2 Let P.and P, be two distributions that have support contained in two closed
manifolds and P that don t perfectly align and don’ t have full dimension. We further
assume that P.and P, are continuous in their respective manifolds, meaning that if there is
a set A with measure 0 in M, then P.(4) = 0(and analogously for F,). Then, there exists an

optimal discriminator D* that has accuracy 1 and for almost any x in M or P, Dis smooth in
a neighborhood of x and V,D*(x) = 0.
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Q7 Problem

In practice, if we just train D till convergence, its error will go to 0.
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Discriminator’s accuracy

1 Discriminator's error
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08 Problem

Theorem 3 (Vanishing gradients on the generator)

Let go: Z~X be a differentiable function that induces a distribution P,. Let P. be the

real data distribution. Let D be a differentiable discriminator. If the conditions of
Theorems 2.1 or 2.2 are satisfied,||D — D*|| < e,and E,_,»)[lJgge(2)1I5] < M?, then

ID[| = sup|D(x)| +[|V,D(x)]l,
1—¢€ XEX

Vo Ez~p(z[log(1 = D(ge(2IN]|, < M

Corollary Under the same assumptions of Theorem 3

IID—l}DrHHo VoE;-pzllog(l —D(ge(2)))] =0




[ ’%mwﬁ’
N\ ¢

///:?
/////

&
£ %

\\\\\\\\\\\\\\W“l//

09 Problem

//////////fl,‘nm\\\\\\

1952
KTISN
& »

UuAha

. Gradient of the generator with the orlgmal cost

_— After1 epoch
107 § —— After 10 epochs
— After 25 epochs

PN -

|VaL(D, gs)|

10-7

10 0 o000 1000 1500 2000 2500 3000 3500 4000

Training iterations
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10 -logD

Vo Ezp(ny[=10gD(go ()]l

|

P, (x) Pyg (%) P, (x)
_ 9ge _ 0 . 9o
KL(PQQHPT) - Ex~Pge [log Pr(x) - xNng [log Pr(x) EXNPge Og Pge (x)
0
D*(x) B D*(ge(2))
= —Ey p,, [log =D (x) — KL(Pge”Pgeo) = —E;p2) [log 1=D" (g, @) — KL(Pge”Pgeo)
D*(ge(2)) P
VoKL(Fy,llP-)lo=6, = —VoEz~p(x) [log 1= D(g42) lo=6, — VoKL(Fyyl1Fyq, ) D* = 5 L

g90+PT'
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11 -logD

D
= VoE;p(2) [ log - lgggg(zg)) lozo,  Ez-p)|Velog(1 — D*(ge(2)))le=0,] = Ve2/S(Py,|I1P)|6=6,

= l7(9Ez~p(z) [—IOQD*(QQ (Z))] + VHEz~p(z) [log(l - D*(ge (Z)))]

E, ()| ~VologD*(ge(2)|e=6,] = Va[KL(P,,1I1B) — 2JS(By,11B)]l6=6,

The JSs are in the opposite sign, which means they are pushing for the distributions to be
different, which seems like a fault in the update.




“E A
\gt\\\\\\\\\\\mm///,//////// +

22

hs
///////

N
%

7

12 -logD

b
&

QW
°
(4]
N

TN

I

=

il

7 ///////////://‘H”H'\

1/’///// i

c

Gradient of the generator with the — log D cost

120 .
— After 1 epoch

. . — After 10 epochs
The gradient norms grow quickly. 0| After 25 epochs
Furthermore, the noise in the curves wl
shows that the variance of the gradients _
is also increasing. S ol

5
All these gradients lead to updates that "
lower sample quality
notoriously. 2
U0 1000 2000 3000 1000 5000 6000 7000

Training iterations
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13 -logD

E,p)|—VologD*(ge(2))|e=s,] = Vo[KL(Py,|IB) — 2JS(By, [IP-)]l6 =0,

The KL appearing in the equation is KL(P,||P.),not the one equivalent to maximum likelihood.

This KL assigns an extremely high cost to generating fake looking samples, and an extremely
low cost on mode dropping, JS is symetrical so it shouldn’ t alter this behaviour.

Pg(x)

P,(x)»0 B -1 P, (x)log ) —0
Pgy(x)
P,(x)->1 P. -0 P, (x)log P‘i(x) —+00




14 MLE

Pz G(z) = x Pg (x; 0) Piata(x) ﬁv UM\A
° Genetive oo "
model _ p(x)

Dk, (P[1Q) _L p(x)log )

- _ P(i)

o L= [Peai0) D (PIIQ) = Z P(Dlog g

0" = argmaxl_[p(; (x!,0) < argmaxlog l_[pG (x%,0)
0 L 6 o
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MLE

m
= argmaxz logP;(x',0) ~ argmaxEy. p, . [logPs(x; 0)]
6 . 6
l

= arggnaxj Paata(x)logPg(x; 8)dx — J Paata(x)logPaqeq (x)dx

~ Pg(x;0)
_arggnaX f p data(x)log Paata(x)

dx

argénin KL(PggtallPs(x; 9))
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16 Comparison

q* = argmin, Dkr(p||q)

Probability Density

— p(x)
- o

Maximum likelihood

Probability Density

q" = argmin,Dkr(q||p)
{'\ — p(x)

\ #*
1 - 4 (z)

Reverse KL
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KL(P|IQ) = | p(x)log p~N(0,€>)  q~N(e €>) KL(P||Q)==
q(x) 2€
1/p
Wk p) = inf, || dGeyPdveoy) | = GotEldee e
Earth-Mover (EM) distance W (P, E) = yeni(f}afjpg) Eeypy~ylllx =yl

[1(B., P,)denotes the set of all joint distributions y(x,y) whose marginal are respectively P. and F,.
Intuitively, y(x, y)indicates how much “mass” must be transported from x to y in order to
transform the distributions P. into the distribution P.. The EM distance is the “cost” of the

optimal transport plan.
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m(s,t)

min z d(s,t) *m(s,t)

T(s,t)

Zm(s, t) =a(s) Vs
t
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W (Py, Pg) = 6] j
5
log?2 if0+0 p
]S(PO'PG)z{o if 6 =0 { G
+o if6 #0
KL(Py, Pg) = KL(Pg, Py) = {o oo ol
W(Pr: Pg)?yenl(l}’ffg) E(x,y)~y[”x - y”] o ' )

\ However, the infimum is highly intractable.
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20 Transformation

Kantorovich-Rubinstein[22] duality tells us that

W (P, Pg) = ||Sfl|1|p Ey p, [f (0] - x~p9 [f (x)] |f (1) — F(x2)| < Kxq — xq]
1
We replace ||f]|, < 1 for||f|l, < K W(F., Pg) = Ell?lllEKExNP Lf GO = Expy [f (X)]

If we have a parameterized family of functions {f,,},,ew that are all K-Lipschitz for some K,
we could consider solving the problem

KW(PT" PG) ~ max Ex~P [fw(x)] z~p(z) [fw(ge(Z))]

wilfwlL<k

Clamp the weights to a fixed box (say W = [—-0.01,0.01]") after each gradient update.
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27 Theory

Corollary Let gy be any feedforward neural network parameterized by 6, and p(z) a prior
over z such that E,_,,[llz]l]] < o (e.g. Gaussian, uniform, etc.). then assumption is satisfied and

therefore W (B, Py) is continuous everywhere and differentiable almost everywhere.

The corollary tells us that learning by minimizing the EM distance makes sense (at least in
theory) with neural networks.

Furthermore, we could consider differentiating W (B,, Py) by back-proping via estimating

VN

max Ex~P [fw ()] — E, 2 [fw(ge(2))] VeW (B, Pg) = — ZNP(Z)[VQf(gQ(Z))]

M

E, p)[Vofw(ge(2))].

wi|fwlLsK
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22 Framework

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritie = D.
Require: : «a, the learning rate. ¢, the clipping parameter. m, the batch size.

neritic, the number of iterations of the critic per generator iteration.
Require: : wyg, initial critic parameters. fg, initial generator’s parameters.
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1: while # has not converged do

2 for t =0, .... neritie dO

3: Sample {z(Y}7™, ~ P, a batch from the real data.
4: Sample {z()1™  ~ p(z) a hatch of prior samples.
5: Gw + Vau [0 1fw(1“) i Fuwlge(z9)]
6: w 4 w + a - RMSProp(w, gw)

7 w < clip(w, —c¢, ¢)

8: end for

9: Sample {z(Y}™  ~ p(z) a batch of prior samples.

10: gg < —Va% Zz—l fu, (99( (Z)))
11: § < 6 — a - RMSProp(6, gs)
12: end while
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The discriminator learns very quickly to

. [ [ 1.0 ! ’
distinguish between fake and real, and as — Density of real
expected provides no reliable gradient 08| — Densityoffake |
. f t —— GAN Discriminator
information. WGAN Critic

0.6 |

The critic, however, can't saturate, and
converges to a linear function that gives
remarkably clean gradients everywhere.

The fact that the EM distance is continuous and
dierentiable a.e. means that we can (and should)

train the critic till optimality. The argument is -0.2} GAN — - Va.”ismngl grgdpi\ijnts
simple, the more we train the critic, the more e | . | lf’l regu E.” |
reliable gradient of the Wasserstein we get, which s 6 4 2 o 2 2 6 8

is actually useful by the fact that Wasserstein is
dierentiable almost everywhere.
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24 Summary

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the clipping
parameter is large, then it can take a long time for any weights to reach their limit, thereby
making it harder to train the critic till optimality. If the clipping is small, this can easily lead
to vanishing gradients when the number of layers is big, or batch normalization is not used
(such as in RNNs).

Comparison
% HBIEEF—EXiEsigmoid £ EREEHIBIEIossRElog
£} SREFHPIENS S SR I BB — N EE S

£} FTERETFHENRLEL (SiEmomentumflAdam ) , #EERMSProp , SGD4T




2 5 Set http://blog.csdn.net/heyongluoyao8/article/details/5 AN
2478715 (A
BGD SGD MBGD Momentum Nesterov Momentum
1 _ , _
g = - Vo Z L(f(x;,6:),y:) Vty1 = ave —Ng O¢11=0¢ + V¢
i
Adagrad gii = VoL(f (x:,6¢:),v:) Ori1i = Ori — NGt Ori1i = O — ! Jt,i
’ ’ ’ 7/ Gt,ii + €
n

G 2— XA |, BUTHAITERe NI ERISRIFH NS0, RS Ot+1 = Or — m@%

Adadelta RMSprop Adam
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2 6 Results

35 F T T T T =
— MLP 512

3.0 | B

— DCGAN

2 i i S
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Wasserstein estimate
“
L -
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‘b
Wasserstein estimate

y ']

0.0 Il 1 | 1 |
0 100000 200000 300000 400000 500000 600000 0.0

1 1 1 1 |
Generator iterations o 100000 200000 300000 400000 500000 600000
Generator iterations

— MLP_G,MLP_D

. ) The evolution of the WGAN estimate (3) of the EM
£ | distance during WGAN training for all three

E architectures.

g gla:{ Ez~p, [fuw(Tr)] — Ezwp(z)[fw(é?@(z” (3)

ew

VO oS oM SRR Ryl
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Generator iterations
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29 WGAN-GP Improved Training of Wasserstein GANs
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L(D) = ~Exp, [D@)] + Erop, [D@]  L(G) = ~Erp, [D@]  |IRD@I|, < K,vx € X

Weight clipping

[ — Weight clipping (¢ = 0.001) /
10— Weight clipping (¢ = 0.01)
—— Weight dlipping (c = 0.1)

m (Gradient penalty

710_

Gradient norm (log scale)

B3 1 7 i i —0.02 —0.0L 000 000  0.02
Discriminator layer Weights
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Gradient penalty

[”VxD(x)”p — K]z
L= —Exp.[DC)] + Exp, [DC)] + AEg-x [[IVzD (D), — 1]

Xp~PBr, xg Py, €~Uniform[0,1]

X =€x,+(1—-¢€)x,

—050 =025  0.00 025  0.50
Weights
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Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngiic = 5, a =

0.0001, By =0, 53 = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritic, the batch size m, Adam hyperparameters «, 31, Gs.

Require: initial critic parameters wyg, initial generator parameters 6.

I: while ¢ has not converged do

2: fort =1, .... ngie do

3 for: =1,....mdo

4 Sample real data @& ~ P,., latent variable z ~ p(z), a random number € ~ U0, 1].
5 T G@(Z}

6 T+ ex+ (1—e)x

7: L®) Dy(x) — Dy(x) + A(||Va Dy (@)||2 — 1)?
8: end for

9: w 4— Adam(Vw% S LW w, By, B2)

10 end for

11 Sample a batch of latent variables {z ()}, ~ p(z).

12 0 < Adam(Vg;% Z:Zl —D.w(Gg(2)),0,a, 51, B2)

13: end while
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32 WGAN-GP

No critic batch normalization
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Layer normalization

Penalize the norm of the critic’ s gradient with respect to each input independently, and
not the entire batch.

Convergence on CIFAR-10 Convergence on CIFAR-10
7 7
6_
z =
2 57 S
R 95!
34 s
@ . Weight clipping é” ; Weight clipping
= —— Gradient Penalty (RMSProp) = —— Gradient Penalty (RMSProp)
924 —— Gradient Penalty (Adam) 9 —— Gradient Penalty (Adam)
—— DCGAN —— DCGAN
14 , . . 1 ‘ . |
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4

x10 ® 10

Generator iterations Wallclock time (in seconds)




3 WGAN-GP

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
T 2 "

L L il

DCGAN

No normalization in either G or D

ere in G and D
{\ 5l -

Ps %
. ~
71952\

N

VRIS

+

[ q\wmnﬁ'

UuAha

\\\\\\\\\

&




\ﬁ\)q\um/ﬁ'

g

N
/1952 D

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial

Network
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Image-to-Image Translation with Conditional Adversarial Networks
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01 Loss Functions

SRResNet
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Pixel-wise loss functions such as MSE,
minimizing MSE encourages finding
pixel-wise averages of plausible
solutions which are typically overly-
smooth and thus have poor perceptual
quality.
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A Natural Image Manifold
MSE-based Solution

”pixel-wise average
of possible solutions”

The MSE-based solution appears overly smooth
due to the pixel-wise average of possible
solutions in the pixel space,

While GAN drives the reconstruction towards the
natural image manifold producing perceptually
more convincing solutions.
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In training, I*% is obtained by applying a Gaussian-filter to 1R followed by a downsampling
operation with downsampling factor r. For an image with ¢ color channels, we describe I°%,
I'R by a real-valued tensor of size W x H x C and I°® by riW x rH x C respectively.

Our ultimate goal is to train a generating function G that estimates for a given LR input image
its corresponding HR counterpart.

A feed-forward CNN Gy, 0c={Wy.., by}

Given training images I/ n =1, ..., N with corresponding I:R,n=1,..,N

N
) 1
0 ¢ = arg ”e’i;nﬁzl SR (G (IER), IHR)
n=

rrelin max E[HR pp . ((HR) [longD (IHRY] + E LR . (1HRY [log(1 — Dy, (Gg, (I*RY)]

G D




04 Perceptual loss function
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SR= 1R+ 1073128, SR=" 1R+ 1073128,
o~
cont;;t loss content loss
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adversarial loss

+  2-10781%y

regularization loss

N———
adversarial loss

Content loss

rW rH
The pixel-wise MSE loss is calculated as

1R = o zU — Gog (IM)x)?

x=1y=

While achieving particularly high PSNR, solutions of MSE optimization problems often
lack high-frequency content which result in perceptually unsatisfying solutions with overly
smooth textures.

We define the VGG loss based on the RelLU activation layers of the pre-trained 19 layer VGG
networke; ; indicates the feature map obtained by the j-th convolution(after activation) feature
map before the i-th maxpooling layer within the VGG19 network, which we consider given
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Adversarial loss

Regularization Loss

lVGG/l,] W H 2 z(¢l] IHR)xy ¢l](GBG(ILR))xy)2

J x=1y=
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135, = ) —logDe, (Go, (I'"))

n=1

rW rH

S 2||vceG<IR>xy||

x=1y=

For better gradient behavior we minimize —logDg, (G, (I"*) instead of log[1 — logDg, (Gg,(I**))]
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06 Batch Normalization Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift
ICML 2015

K

Input: Values of = over a mini-batch: B = {x1.__m};
Parameters to be learned: ~, (3
. o . ot _ of
Output: {y; = BN, 5(z;)} 9z, — oy
af m oL —1 2 —3/2
1 — o 903 D i1 7, (i — pB) < (o5 +¢€) /
UB — — Ti // mini-batch mean 5 m o _1
2 1 5 . . ot _ ot 1 e '2(333'_#3)_'_ oL 1
o - (z; — pB) // mini-batch variance Bz, 7, o2 te 802, m dus  m
i=1 .
ot _ \m o 9t
~ Ly — HUB , oy — Zizl dy; i
Tq 4— // normalize 50 .

/ oL

yi < T + = BN, g(x;) // scale and shift
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Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification

-
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ICCV 2015 ﬁ
7l

_(yi ifyi>0
fou) {ai}’i ify; <0

If a; is a small and fixed value, PRelLU
becomes the Leaky RelLU.

J0)=0

PReLU introduces a very small number of

extra parameters. The number of extra parameters is equal to the total number of
channels, which is negligible when considering the total number of weights.
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08 RelUs

PReLU can be trained using backpropagation and optimized simultaneously with other
layers.

de de  If (yy) de . :
— = s the gradient propagated from the deeper layer.
da; ~ LiOf ) 0 oron > e 9 Propag periay
. o fyvi) (0 ify;>0
The gradient of the activation is given by: ={ ot
9 9 y da; yi ifyi <0
We adopt the momentum method when updating a;:
de
Aag= pha; + €2 u is the momentum and € is the learning rate
l

It is worth noticing that we do not use weight decay (L, regularization) when updating a;. A
weight decay tends to push a; to zero, and thus biases PRelLU toward RelLU.
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skip connection
Discriminator Network k3n128s2 k3n25652 k3n512s2
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‘I 0 Results

SRResNet- SRGAN-

Set5 MSE  VGG22 | MSE  VGG22 VGG54
PSNR 32.05 3051 | 30.64 2984  29.40
SSIM 09019 0.8803 | 0.8701 0.8468  0.8472
MOS 337  3.46 377 3.78 3.58
Set14

PSNR 2849 27.19 | 2692 2644  26.02
SSIM  0.8184 0.7807 | 0.7611 0.7518  0.7397
MOS 298  3.15* | 343  3.57 3.72*
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nearest
bicubic 2000

SRCNN
SelfEXSR —
DRCN 1200

ESPCN
SRResNet s08
SRGAN ° 400

HR e
1 2 3 4 5
MOS

Figure 5: Color-coded distribution of MOS scores on

BSD100. For each method 2600 samples (100 images x
26 raters) were assessed. Mean shown as red marker, where
the bins are centered around value . [4 X upscaling]




‘I ‘I Results

SetS nearest bicubic SRCNN SelfExSR DRCN ESPCN SRResNet SRGAN HR
PSNR 26.26 28.43 30.07 30.33 31.52 30.76 32.05 29.40 00
SSIM 0.7552 0.8211 0.8627 0.872 0.8938 0.8784  0.9019 0.8472 1
MOS 1.28 1.97 2.57 2.65 3.26 2.89 3.37 3.58 4.32
Setl4

PSNR 24.64 25.99 27.18 27.45 28.02 27.66 28.49 26.02 00
SSIM 0.7100 0.7486 0.7861 0.7972 0.8074 0.8004  0.8184 0.7397 1
MOS 1.20 1.80 2.26 2.34 2.84 2.52 2.98 3.72 4.32
BSD100

PSNR 25.02 25.94 26.68 26.83 27.21 27.02 27.58 25.16 00
SSIM 0.6606 0.6935 0.7291 0.7387 0.7493 0.7442  0.7620 0.6688 1
MOS 1.11 1.47 1.87 1.89 2.12 2.01 2.29 3.56 4.46
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Image-to-Image Translation with Conditional Adversarial Networks

Real or fake pair? arXiv 2016.11.21

Real or fake pair?

GANSs are generative models that learn a
mapping from random noise vector z to output
Image y: G:z - vy, In contrast, conditional GANs
learn a mapping from observed image x and
random noise vector z, to y: G: {x, z} - y.

G tries to synthesize fake
images that fool D

D tries to identify the fakes
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LCGAN (G: D) = Ex,y~pdata(x,y) [logD (x: y)] + Ex~pdata(x),z~pz(z) [log(l —D (x: G(x: Z)))]

G* = arg mGin max Lcean(G, D)

To test the importance of conditioning the discrimintor, we also compare to an unconditional
variant in which the discriminator does not observe x:

LGAN (Gr D) = Ey~pdata(x,y) [logD (y)] + Ex~pdata(x),z~pz(z) [log(l _ D(x' G(x, Z)))]

Previous approaches to conditional GANs have found it beneficial to mix the GAN objective

with a more traditional loss, such as L2 distance. The discriminator’ s job remains unchanged,
but the generator is tasked to not only fool the discriminator but also to be near the ground
truth output in an L2 sense.
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L4 (G, D) — Ex~pdata(x),z~pz(z)[”y - G(xr Z)”l]

G* = arg mGjn max Legan(G,D) + AL 1(G)
Without z, the net could still learn a mapping from x to y, but would produce deterministic

outputs, and therefore fail to match any distribution other than a delta function.

Past conditional GANs have acknowledged this and provided Gaussian noise z as an input
to the generator, in addition to x.

In initial experiments, we did not find this strategy effective — the generator simply learned
to ignore the noise.
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We provide noise only in the form of dropout,
applied on several layers of our generator at 1

both training and test time. I

Despite the dropout noise, we observe very | 1 ] : |
minor stochasticity in the output of our nets. I |
Encoder-decoder U-Net

Dropout: A Simple Way to Prevent Neural Networks from Overtting JMLR 2014

U-Net: Convolutional Networks for Biomedical Image Segmentation

International Conference on Medical Image Computing & Computer-assisted Intervention 2015




1 7 Generator

In such a network, the input is passed through a series of
layers that progressively downsample, until a bottleneck layer,
at which point the process is reversed.

Specifically, we add skip connections between each
layer I and layer n — i, where n is the total number of
layers.

C, denote a Convolution-BatchNorm-ReLU layer
with k filters

CD, denotes a Convolution-BatchNorm-Dropout-RelLU
layer with a dropout rate of 50%.
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Encoder-decoder
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‘l 8 Architecture

Encoder C64_C128_C256_C512_C512_C512_C512_C512

Decoder C512_C512_C512_C512_C512_256_C128_Co64

After the last layer in the decoder, a convolution is applied to map to the number of output
channels (3 in general, except in colorization, where it is 2), followed by a tanh function. As an
exception to the above notation, Batch-Norm is not applied to the first C64 layer in the
encoder. All ReLUs in the encoder are leaky, with slope 0.2, while ReLUs in the decoder are not

leaky.
U-Net decoder (CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128

70x70discriminator C64_C128_(C256_C512 16 x16discriminator C64-C128

256 x256discriminator C64-C128-C256-C512-C512-C512 1x1discriminator C064-C128
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Loss Per-pixel ace.  Per-class ace.  Class IOU
L1 0.44 0.14 0.10
GAN 0.22 0.05 0.01
¢GAN 0.61 0.21 0.16
L1+GAN 0.64 0.19 0.15
L1+¢GAN 0.63 0.21 0.16
Ground truth 0.80 0.26 0.21

Table 1: FCN-scores for different losses, evaluated on Cityscapes
labels+photos.
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Results

L14cGAN

Encoder-decoder

U-Net

Figure 5: Adding skip connections to an encoder-decoder to create
a “U-Net” results in much higher quality results.
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Discriminator ,,;;’/f//m’nI\‘l\\'\\\““\‘,~
receptive field Per-pixel ace. Per-class ace. Class IOU uh
1x1 0.44 0.14 0.10
1616 0.62 0.20 0.16
7070 0.63 0.21 0.16
256 %256 0.47 0.18 0.13

Table 2: FCN-scores for different receptive field sizes of the dis-
criminator, evaluated on Cityscapes labels—photos.

A Ix1

16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 Pixel GAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces

outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please




