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01 Problem 

Despite their success, there is little to no theory explaining the unstable behavior of GAN 
training. 

𝑧~𝑝(𝑧) 
𝑔𝜃(𝑧) 

𝑃𝑔 

Always,𝑔𝜃 is a neural network parameterized by θ , and the main difference is how 𝑔𝜃  is trained. 

𝑃𝑟 

MLE                     min(KL divergence) 𝐾𝐿(𝑃𝑟| 𝑃𝑔 =  𝑃𝑟𝑙𝑜𝑔
𝑃𝑟

𝑃𝑔
 

𝐽𝑆(𝑃𝑟| 𝑃𝑔 =
1

2
𝐾𝐿(𝑃𝑟| 𝑃𝐴 +

1

2
𝐾𝐿(𝑃𝑔| 𝑃𝐴  𝑃𝐴 =

𝑃𝑟 + 𝑃𝑔

2
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The reason of GANs success at producing reallistically looking images is due to the switch 
from the traditional maximum likelihood approaches. 

𝐿 𝐷, 𝑔𝜃 = 𝐸𝑥~𝑃𝑟
𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

[log⁡(1 − 𝐷(𝑥))] 𝐷∗ 𝑥 =
𝑃𝑟(𝑥)

𝑃𝑟 𝑥 + 𝑃𝑔(𝑥)
 

𝐿 𝐷∗, 𝑔𝜃 = 2𝐽𝑆(𝑃𝑟| 𝑃𝑔 − 2𝑙𝑜𝑔2 

In practice, as the discriminator gets better, the updates to the generator get consistently 
worse. 

The original GAN paper argued that this issue arose from saturation, and switched to 
another similar cost function that doesn’t have this problem. 

Problem 
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log(1 − 𝐷(𝐺(𝑧))) 

−log(𝐷(𝐺(𝑧))) 

Problem 
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However, even with this new cost function, updates tend to get worse and optimization 
gets massively unstable. 

Problem 

𝑃1 𝑃2 

𝑃1 𝑥 ≠ 0&𝑃2 𝑥 = 0 
𝑃1 𝑥 ≠ 0⁡&𝑃2 𝑥 ≠ 0 

𝑃1 𝑥 = 0&𝑃2 𝑥 ≠ 0 
𝑃1 𝑥 = 0&𝑃2 𝑥 = 0 

JS = log
𝑃2

1
2

(𝑃2 + 0)
= log2 
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The only way this can happen is if the distributions are not continuous, or they have 
disjoint supports. 

Problem 

Their supports lie on low dimensional manifolds. 
support 

manifold 

measure 

1 

2 

3 

Lemma ... ..., if the dimension of Z is less than the one of X, g(Z) 
will be a set of measure 0 in X. 



06 Problem 

Theorem 1  If two distributions 𝑃𝑟and 𝑃𝑔⁡have support contained on two disjoint 
compact subsets M and P respectively, then there is a smooth optimal discrimator 𝐷∗

 : 
that has accuracy 1 and 𝛻𝑥𝐷∗ 𝑥 = 0 for all x ∈ MUP 

Theorem 2  Let  𝑃𝑟and 𝑃𝑔 be two distributions that have support contained in two closed 
manifolds and P that don’t perfectly align and don’t have full dimension. We further 
assume that 𝑃𝑟and 𝑃𝑔   are continuous in their respective manifolds, meaning that if there is 
a set A with measure 0 in M, then 𝑃𝑟 𝐴 = 0(and analogously for 𝑃𝑔). Then, there exists an 
optimal discriminator 𝐷∗⁡that has accuracy 1 and for almost any x in M or P, D is smooth in 
a neighborhood of x and 𝛻𝑥𝐷∗ 𝑥 = 0 . 
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In practice, if we just train D till convergence, its error will go to 0. 
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𝐷 = sup
𝑥∈𝒳

𝐷 𝑥 +||𝛻𝑥𝐷(𝑥)||2 

Theorem 3 (Vanishing gradients on the generator)  

Let 𝑔𝜃: 𝒵~𝒳 be a differentiable function that induces a distribution 𝑃𝑔. Let 𝑃𝑟 be the 
real data distribution. Let D be a differentiable discriminator. If the conditions of 
Theorems 2.1 or 2.2 are satisfied, 𝐷 − 𝐷∗ < 𝜖,and 𝐸𝑧~𝑝(𝑧) 𝐽𝜃𝑔𝜃(𝑧) 2

2 ≤ 𝑀2, 𝑡ℎ𝑒𝑛 

Corollary 

lim
||𝐷−𝐷∗||→0

𝛻𝜃𝐸𝑧~𝑝(𝑧) log⁡(1 − 𝐷(𝑔𝜃(𝑧))) = 0 

Under the same assumptions of Theorem 3 

𝛻𝜃𝐸𝑧~𝑝(𝑧)[log⁡(1 − 𝐷(𝑔𝜃(𝑧)))]
2

< 𝑀
𝜖

1 − 𝜖
 

Problem 
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10 
𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔𝐷 𝑔𝜃 𝑧 |𝜃0

 

𝐷∗ =
𝑃𝑟

𝑃𝑔𝜃0
+𝑃𝑟

 

𝐾𝐿(𝑃𝑔𝜃
| 𝑃𝑟 = 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃

(𝑥)

𝑃𝑟(𝑥)
 = 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃0

(𝑥)

𝑃𝑟(𝑥)
− 𝐸𝑥~𝑃𝑔𝜃

𝑙𝑜𝑔
𝑃𝑔𝜃

(𝑥)

𝑃𝑔𝜃0
(𝑥)

 

= −𝐸𝑥~𝑃𝑔𝜃
𝑙𝑜𝑔

𝐷∗(𝑥)

1 − 𝐷∗⁡(𝑥)
− 𝐾𝐿(𝑃𝑔𝜃

||𝑃𝑔𝜃0
) = −𝐸𝑧~𝑝(𝑧) 𝑙𝑜𝑔

𝐷∗(𝑔𝜃 𝑧 )

1 − 𝐷∗⁡(𝑔𝜃 𝑧 )
− 𝐾𝐿(𝑃𝑔𝜃

||𝑃𝑔𝜃0
) 

𝛻𝜃𝐾𝐿(𝑃𝑔𝜃
| 𝑃𝑟 |𝜃=𝜃0

= −𝛻𝜃𝐸𝑧~𝑝 𝑧 𝑙𝑜𝑔
𝐷∗ 𝑔𝜃 𝑧

1 − 𝐷∗ 𝑔𝜃 𝑧
|𝜃=𝜃0

− 𝛻𝜃𝐾𝐿(𝑃𝑔𝜃
||𝑃𝑔𝜃0

) 

-logD 
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= 𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔
𝐷∗ 𝑔𝜃 𝑧

1 − 𝐷∗ 𝑔𝜃 𝑧
|𝜃=𝜃0

 𝐸𝑧~𝑝(𝑧) 𝛻𝜃log⁡(1 − 𝐷∗(𝑔𝜃(𝑧)))|𝜃=𝜃0
= 𝛻𝜃2𝐽𝑆(𝑃𝑔𝜃

||𝑃𝑟)|𝜃=𝜃0
 

= 𝛻𝜃𝐸𝑧~𝑝 𝑧 −𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧 ) + 𝛻𝜃𝐸𝑧~𝑝 𝑧 log⁡(1 − 𝐷∗ 𝑔𝜃 𝑧 )  

𝐸𝑧~𝑝 𝑧 −𝛻𝜃𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧 )|𝜃=𝜃0
= 𝛻𝜃[𝐾𝐿(𝑃𝑔𝜃

| 𝑃𝑟 − 2𝐽𝑆(𝑃𝑔𝜃
| 𝑃𝑟 )]|𝜃=𝜃0

 

The JSs are in the opposite sign, which means they are pushing for the distributions  to be 
different, which seems like a fault in the update. 

-logD 
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The gradient norms grow quickly.  
 
Furthermore, the noise in the curves 
shows that the variance of the gradients 
is also increasing.  
 
All these gradients lead to updates that 
lower sample quality 
notoriously. 
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The KL appearing in the equation is 𝐾𝐿(𝑃𝑔||𝑃𝑟),not the one equivalent to maximum likelihood. 

This KL assigns an extremely high cost to generating fake looking samples, and an extremely 
low cost on mode dropping, JS is symetrical so it shouldn’t alter this behaviour. 

𝑃𝑔 𝑥 → 0⁡⁡⁡⁡⁡⁡𝑃𝑟 → 1 𝑃𝑔 𝑥 log
𝑃𝑔(𝑥)

𝑃𝑟(𝑥)
  →0 

𝑃𝑔 𝑥 → 1⁡⁡⁡⁡⁡⁡𝑃𝑟 → 0 𝑃𝑔 𝑥 log
𝑃𝑔(𝑥)

𝑃𝑟(𝑥)
  →+∞ 

-logD 

𝐸𝑧~𝑝 𝑧 −𝛻𝜃𝑙𝑜𝑔𝐷∗(𝑔𝜃 𝑧 )|𝜃=𝜃0
= 𝛻𝜃[𝐾𝐿(𝑃𝑔𝜃

| 𝑃𝑟 − 2𝐽𝑆(𝑃𝑔𝜃
| 𝑃𝑟 )]|𝜃=𝜃0

 



14 MLE 

𝑥1, 𝑥2, … , 𝑥𝑚 𝐿 =  𝑃𝐺(𝑥𝑖; 𝜃)

𝑚

𝑖=1

 

𝜃∗ = argmax
𝜃

 𝑝𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖=1

⁡⁡⟺ argmax
𝜃

𝑙𝑜𝑔  𝑝𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖=1

 

𝐷𝐾𝐿(𝑃| 𝑄 =  𝑃 𝑖 𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

𝐷𝐾𝐿(𝑃| 𝑄 =  𝑝 𝑥 𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)

+∞

−∞

 
z Genetive 

model 

𝐺 𝑧 = 𝑥 
𝑝𝑧 

𝑃𝐺(𝑥; 𝜃) 𝑃𝑑𝑎𝑡𝑎 𝑥  
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= argmax
𝜃

 𝑙𝑜𝑔𝑃𝐺(𝑥𝑖 , 𝜃)

𝑚

𝑖

 ≈ argmax
𝜃

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝑃𝐺(𝑥; 𝜃)] 

⟺ argmax
𝜃

 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃 𝑑𝑥 −  𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝑑𝑎𝑡𝑎 𝑥 𝑑𝑥 

=argmax
𝜃

 𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥;𝜃

𝑃𝑑𝑎𝑡𝑎 𝑥
𝑑𝑥 

argmin
𝜃

𝐾𝐿(𝑃𝑑𝑎𝑡𝑎||𝑃𝐺(𝑥; 𝜃)) 



16 Comparison 



17 WGAN Wasserstein GAN (arXiv 2017.5.9) 

Earth-Mover (EM) distance 𝑊(𝑃𝑟 , 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

𝐸 𝑥,𝑦 ~𝛾 𝑥 − 𝑦  

∏(𝑃𝑟 , 𝑃𝑔)denotes the set of all joint distributions γ 𝑥, 𝑦  whose marginal are respectively 𝑃𝑟 and 𝑃𝑔.   
Intuitively, γ 𝑥, 𝑦 indicates how much “mass”must be transported from x to y in order to 
transform the distributions 𝑃𝑟 into the distribution 𝑃𝑟. The  EM distance is the “cost”of the 
optimal transport plan. 

𝐾𝐿(𝑃| 𝑄 =  𝑝 𝑥 𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)

+∞

−∞

 𝑝~𝑁(0, 𝜖3) 𝑞~𝑁(𝜖, 𝜖3) 𝐾𝐿(𝑃| 𝑄 =
1

2𝜖
 

𝑊(𝑃𝑟, 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

 𝑑 𝑥, 𝑦 𝑝𝑑𝛾(𝑥, 𝑦)

1/𝑝

= (inf
𝛾

𝐸 𝑑(𝑥, 𝑦)𝑝 )1/𝑝 



18 EM 

a 

b 

c 

d 

e 

f 

0.4 

0.2 

0.4 

0.3 

0.6 

0.1 
𝑚𝑖𝑛  𝑑 𝑠, 𝑡 ∗ 𝑚(𝑠, 𝑡)

𝜋(𝑠,𝑡)

 

𝑑 𝑠, 𝑡  𝑚(𝑠, 𝑡) 

 𝑚 𝑠, 𝑡

𝑡

= 𝑎 𝑠 ⁡⁡∀𝑠  𝑚 𝑠, 𝑡

𝑠

= 𝑏 𝑡 ⁡∀𝑡 



19 Comparison 

𝑊(𝑃0, 𝑃𝜃) = |𝜃| 

𝐽𝑆(𝑃0, 𝑃𝜃) =  
𝑙𝑜𝑔2⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜃 ≠ 0
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜃 = 0

 

𝐾𝐿(𝑃0, 𝑃𝜃) = 𝐾𝐿 𝑃𝜃 , 𝑃0 =  
+∞⁡⁡𝑖𝑓𝜃 ≠ 0
0⁡⁡⁡⁡⁡⁡𝑖𝑓𝜃 = 0

 

𝑊(𝑃𝑟 , 𝑃𝑔) = inf
𝛾∈∏(𝑃𝑟,𝑃𝑔)

𝐸 𝑥,𝑦 ~𝛾 𝑥 − 𝑦  

However, the infimum is highly intractable. 



20 Transformation 

𝑊(𝑃𝑟, 𝑃𝜃) = sup
||𝑓||≤1

𝐸𝑥~𝑃𝑟
𝑓 𝑥 − 𝐸𝑥~𝑝𝜃

[𝑓(𝑥)] 

Kantorovich-Rubinstein[22] duality tells us that 

𝑓 𝑥1 − 𝑓(𝑥2) ≤ 𝐾|𝑥1 − 𝑥2| 

𝑊(𝑃𝑟, 𝑃𝜃) =
1

𝐾
sup

||𝑓||≤𝐾

𝐸𝑥~𝑃𝑟
𝑓 𝑥 − 𝐸𝑥~𝑝𝜃

[𝑓(𝑥)] We replace ||𝑓||𝐿 ≤ 1 for⁡||𝑓||𝐿 ≤ 𝐾   

If we have a parameterized family of functions 𝑓𝑤 𝑤∈𝑊 that are all K-Lipschitz for some K, 
 we could consider solving the problem 

𝐾𝑊(𝑃𝑟, 𝑃𝜃) ≈ max
𝑤:|𝑓𝑤|𝐿≤𝐾

𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))] 

Clamp the weights to a fixed box (say 𝒲 = [−0.01,0.01]𝑙) after each gradient update. 



21 Theory 

The corollary tells us that learning by minimizing the EM distance makes sense (at least in 
theory) with neural networks. 

Corollary                   Let 𝑔𝜃 be any feedforward neural network parameterized by θ , and p(z) a prior 
 over z such that 𝐸𝑧~𝑝(𝑧) 𝑧 < ∞ (e.g. Gaussian, uniform, etc.).  then assumption is satisfied and 
therefore 𝑊(𝑃𝑟 , 𝑃𝜃) is continuous everywhere and differentiable  almost everywhere. 

Furthermore, we could consider differentiating 𝑊(𝑃𝑟 , 𝑃𝜃) by back-proping via estimating 
𝐸𝑧~𝑝(𝑧) 𝛻𝜃𝑓𝑤(𝑔𝜃(𝑧)) . 

max
𝑤:|𝑓𝑤|𝐿≤𝐾

𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))] 𝛻𝜃𝑊 𝑃𝑟, 𝑃𝜃 = −𝐸𝑧~𝑝(𝑧) 𝛻𝜃𝑓(𝑔𝜃(𝑧))   
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23 Comparison 

The discriminator learns very quickly to 
distinguish between fake and real, and as 
expected provides no reliable gradient 
information. 
 
The critic, however, can't saturate, and 
converges to a linear function that gives 
remarkably clean gradients everywhere. 

critic=𝐸𝑥~𝑃𝑟
𝑓𝑤(𝑥) − 𝐸𝑧~𝑝 𝑧 [𝑓𝑤(𝑔𝜃(𝑧))] 

The fact that the EM distance is continuous and 
dierentiable a.e. means that we can (and should) 
train the critic till optimality. The argument is 
simple, the more we train the critic, the more 
reliable gradient of the Wasserstein we get, which 
is actually useful by the fact that Wasserstein is 
dierentiable almost everywhere. 



24 Summary 

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the clipping 
parameter is large, then it can take a long time for any weights to reach their limit, thereby 
making it harder to train the critic till optimality. If the clipping is small, this can easily lead 
to vanishing gradients when the number of layers is big, or batch normalization is not used 
(such as in RNNs). 

Comparison 

1 2 

3 

4 

判别器最后一层去掉sigmoid 生成器和判别器的loss不取log 

每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c 

不要用基于动量的优化算法（包括momentum和Adam），推荐RMSProp，SGD也行 



25 Set 

BGD SGD MBGD Momentum 

𝑔′ =
1

𝑚
𝛻𝜃  𝐿(𝑓 𝑥𝑖 , 𝜃𝑡 , 𝑦𝑖)

𝑖

 𝑣𝑡+1 = 𝑎𝑣𝑡 − 𝜂𝑔′       𝜃𝑡+1=𝜃𝑡 + 𝑣𝑡 

Adagrad 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂𝑔𝑡,𝑖 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

𝐺𝑡,𝑖𝑖 + 𝜖
𝑔𝑡,𝑖 𝑔𝑡,𝑖

′ = 𝛻𝜃𝐿(𝑓 𝑥𝑖 , 𝜃𝑡,𝑖 , 𝑦𝑖) 

𝐺𝑡是一个对角矩阵，第𝑖行对角元素𝑒𝑖𝑖为过去到当前第𝑖个参数𝜃𝑖的梯度平方和 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝐺𝑡 + 𝜖
⨀𝑔𝑡 

 Adadelta RMSprop Adam 

http://blog.csdn.net/heyongluoyao8/article/details/5
2478715 

Nesterov Momentum 



26 Results 

The evolution of the WGAN estimate (3) of the EM 
distance during WGAN training for all three 
architectures. 



27 Results 



28 Results 



29 WGAN-GP Improved Training of Wasserstein GANs 

𝐿 𝐷 = −𝐸𝑥~𝑃𝑟
𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

𝐷(𝑥)  𝐿 𝐺 = −𝐸𝑥~𝑃𝑔
𝐷(𝑥)  | 𝛻𝑥𝐷 𝑥 | 

𝑝
< 𝐾, ∀𝑥 ∈ 𝒳 



30 WGAN-GP 

[| 𝛻𝑥𝐷 𝑥 |𝑝 − 𝐾]2 

𝐿 = −𝐸𝑥~𝑃𝑟
𝐷 𝑥 + 𝐸𝑥~𝑃𝑔

𝐷 𝑥 + 𝜆𝐸𝑥 ~𝒳[| 𝛻𝑥 𝐷 𝑥 |𝑝 − 1]2 

𝑥𝑟~𝑃𝑟 , 𝑥𝑔~𝑃𝑔, 𝜖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1] 

𝑥 = 𝜖𝑥𝑟 + (1 − 𝜖)𝑥𝑔 



31 WGAN-GP 



32 WGAN-GP 

Penalize the norm of the critic’s gradient with respect to each input independently, and 
not the entire batch.                    

No critic batch normalization 
Layer normalization 



33 WGAN-GP 



Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial 
Network 

2017.7.24 

arXiv 2016.9.15 
         2017.5.25 

Image-to-Image Translation with Conditional Adversarial Networks 

arXiv 2016.11.21 



01 Loss Functions 

Pixel-wise loss functions such as MSE, 
minimizing MSE encourages finding 
pixel-wise averages of plausible 
solutions which are typically overly-
smooth and thus have poor perceptual 
quality. 
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The MSE-based solution appears overly smooth 
due to the pixel-wise average of possible 
solutions in the pixel space, 
 
While GAN drives the reconstruction towards the 
natural image manifold producing perceptually 
more convincing solutions. 

Loss Functions 



03 SRGAN 

In training, 𝐼𝐿𝑅
 is obtained by applying a Gaussian-filter to 𝐼𝐻𝑅 followed by a downsampling 

operation with downsampling factor r. For an image with 𝐶 color channels, we describe 𝐼𝑆𝑅, 
𝐼𝐿𝑅 by a real-valued tensor of size 𝑊 × 𝐻 × 𝐶 and 𝐼𝑆𝑅 by r𝑊 × 𝑟𝐻 × 𝐶 respectively. 

Our ultimate goal is to train a generating function G that estimates for a given LR input image 
its corresponding HR counterpart. 

A feed-forward CNN 𝐺𝜃𝐺
 𝜃𝐺= 𝑊1:𝐿, 𝑏1:𝐿  

𝜃  𝐺 = arg⁡min
𝜃𝐺

1

𝑁
 𝑙𝑆𝑅(𝐺𝜃𝐺

𝐼𝑛
𝐿𝑅 , 𝐼𝑛

𝐻𝑅)

𝑁

𝑛=1

 

Given training images 𝐼𝑛
𝐻𝑅,𝑛 = 1, … , 𝑁 with corresponding 𝐼𝑛

𝐿𝑅, 𝑛 = 1, … , 𝑁 

min
𝜃𝐺

max
𝜃𝐷

𝐸𝐼𝐻𝑅~𝑝𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅)⁡ 𝑙𝑜𝑔𝐷𝜃𝐷
(𝐼𝐻𝑅) + 𝐸𝐼𝐿𝑅~𝑝𝐺(𝐼𝐻𝑅) log⁡(1 − 𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅)))  



04 Perceptual loss function 

𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡⁡𝑙𝑜𝑠𝑠

+ 10−3𝑙𝐺𝑒𝑛
𝑆𝑅

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙⁡𝑙𝑜𝑠𝑠

 

The pixel-wise MSE loss is calculated as 𝑙𝑀𝑆𝐸
𝑆𝑅 =

1

𝑟2𝑊𝐻
  (𝐼𝑥,𝑦

𝐻,𝑅 − 𝐺𝜃𝐺
⁡ 𝐼𝐿𝑅

𝑥,𝑦)2

𝑟𝐻

𝑦=1

𝑟𝑊

𝑥=1

 

     While achieving particularly high PSNR, solutions of MSE optimization problems often  
lack high-frequency content which result in perceptually unsatisfying solutions with overly 
smooth textures. 

Content loss 

We define the VGG loss based on the ReLU activation layers of the pre-trained 19 layer VGG   
network𝜙𝑖,𝑗 indicates the feature map obtained by the j-th convolution(after activation) feature 
map before the i-th maxpooling layer within the VGG19 network, which we consider given. 

𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡⁡𝑙𝑜𝑠𝑠

+ 10−3𝑙𝐺𝑒𝑛
𝑆𝑅

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙⁡𝑙𝑜𝑠𝑠

+ 2 ∙ 10−8𝑙𝑇𝑉
SR

regularization⁡𝑙𝑜𝑠𝑠
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Adversarial loss 

𝑙𝐺𝑒𝑛
𝑆𝑅 =  −𝑙𝑜𝑔𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅))

𝑁

𝑛=1

 

For better gradient behavior we minimize −𝑙𝑜𝑔𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝐿𝑅) instead of log[1 − 𝑙𝑜𝑔𝐷𝜃𝐷
(𝐺𝜃𝐺

𝐼𝐿𝑅 )]  

𝑙𝑉𝐺𝐺 𝑖,𝑗 
𝑆𝑅 =

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
  (𝜙𝑖,𝑗(𝐼

𝐻𝑅)𝑥,𝑦−𝜙𝑖,𝑗(𝐺𝜃𝐺
(𝐼𝐿𝑅))𝑥,𝑦)2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 

Regularization Loss 

𝑙𝑇𝑉
𝑆𝑅 =

1

𝑟2𝑊𝐻
  𝛻𝐺𝜃𝐺

(𝐼𝑅)𝑥,𝑦

𝑟𝐻

𝑦=1

𝑟𝑊

𝑥=1

 



06 Batch Normalization Batch Normalization: Accelerating Deep Network Training by  
Reducing Internal Covariate Shift 

ICML 2015 



07 ReLUs Delving Deep into Rectifiers: Surpassing Human-Level 
     Performance on ImageNet Classification            ICCV 2015 

𝑓 𝑦𝑖 =  
𝑦𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑦𝑖 > 0
𝑎𝑖𝑦𝑖 ⁡⁡⁡⁡𝑖𝑓𝑦𝑖 ≤ 0

 

If 𝑎𝑖 is a small and fixed value, PReLU  
becomes the Leaky ReLU. 

PReLU introduces a very small number of 
extra parameters. The number of extra parameters  is equal to the total number of 
channels, which is negligible when considering the total number of weights. 



08 ReLUs 

𝜕𝜀

𝜕𝑎𝑖
=  

𝜕𝜀

𝜕𝑓(𝑦𝑖)

𝜕𝑓(𝑦𝑖)

𝜕𝑎𝑖
𝑦𝑖

 

PReLU can be trained using backpropagation  and optimized simultaneously with other 
layers. 

𝜕𝑓(𝑦𝑖)

𝜕𝑎𝑖
=  

0⁡⁡⁡⁡⁡𝑖𝑓𝑦𝑖 > 0
𝑦𝑖 ⁡⁡⁡⁡𝑖𝑓𝑦𝑖 < 0

 

We adopt the momentum method when updating 𝑎𝑖: 

∆𝑎𝑖≔ 𝜇∆𝑎𝑖 + 𝜖
𝜕𝜀

𝜕𝑎𝑖
 μ is the momentum and ϵ is the learning rate 

It is worth noticing that we do not use weight decay (𝐿2  regularization) when updating 𝑎𝑖. A 
weight decay tends to push 𝑎𝑖  to zero, and thus biases PReLU toward ReLU. 

𝜕𝜀

𝜕𝑓(𝑦𝑖)
is the gradient propagated from the deeper layer. 

The gradient of the activation is given by: 
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10 Results 



11 Results 



12 Results 



13 CGAN-Image 

Image-to-Image Translation with Conditional Adversarial Networks 

arXiv 2016.11.21 

     GANs are generative models that learn a  
mapping from random noise vector z to output 
image 𝑦: 𝐺: 𝑧 → 𝑦, In contrast, conditional GANs 
learn a mapping from observed image 𝑥 and 
random noise vector 𝑧, to 𝑦: 𝐺: {𝑥, 𝑧} → 𝑦. 
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𝐿𝐶𝐺𝐴𝑁 𝐺, 𝐷 = 𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦) 𝑙𝑜𝑔𝐷(𝑥, 𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) log⁡(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))  

𝐺∗ = arg⁡min
𝐺

max
𝐷

𝐿𝐶𝐺𝐴𝑁(𝐺, 𝐷) 

To test the importance of conditioning the discrimintor, we also compare to an unconditional 
variant in which the discriminator does not observe 𝑥: 

𝐿𝐺𝐴𝑁 𝐺, 𝐷 = 𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦) 𝑙𝑜𝑔𝐷(𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) log⁡(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))  

Previous approaches to conditional GANs have found it beneficial to mix the GAN objective 
with a more traditional loss, such as L2 distance. The discriminator’s job remains unchanged, 
but the generator is tasked to not only fool the discriminator but also to be near the ground 
truth output in an L2 sense. 

CGAN-Image 
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𝐿𝐿1 𝐺, 𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ,𝑧~𝑝𝑧(𝑧) 𝑦 − 𝐺(𝑥, 𝑧) 1  

𝐺∗ = arg⁡min
𝐺

max
𝐷

𝐿𝐶𝐺𝐴𝑁 𝐺, 𝐷 + 𝜆𝐿𝐿1(𝐺) 

Without z, the net could still learn a mapping from x to y, but would produce deterministic 
outputs, and therefore fail to match any distribution other than a delta function. 

Past conditional GANs have acknowledged this and provided Gaussian noise z as an input 
to the generator, in addition to 𝑥. 

In initial experiments, we did not find this strategy effective – the generator simply  learned 
to ignore the noise. 

CGAN-Image 



16 

Despite the dropout noise, we observe very 
minor stochasticity in the output of our nets. 

We provide noise only in the form of dropout, 
applied on several layers of our generator at 
both training and test time. 

Dropout: A Simple Way to Prevent Neural Networks from Overtting JMLR 2014 

U-Net: Convolutional Networks for Biomedical Image Segmentation 

International Conference on Medical Image Computing & Computer-assisted Intervention 2015 

CGAN-Image 



17 Generator 

In such a network, the input is passed through a series of 
layers that progressively downsample, until a bottleneck layer, 
at which point the process is reversed. 

Specifically, we add skip connections between each 
layer I and layer 𝑛 − 𝑖, where 𝑛 is the total number of 
layers. 

𝐶𝑘 denote a Convolution-BatchNorm-ReLU layer 
with k filters 

𝐶𝐷𝑘 denotes a  Convolution-BatchNorm-Dropout-ReLU 
layer with a dropout rate of 50%. 



18 Architecture 

Encoder C64_C128_C256_C512_C512_C512_C512_C512 

C512_C512_C512_C512_C512_256_C128_C64 Decoder 

After the last layer in the decoder, a convolution is applied to map to the number of output 
channels (3 in general, except in colorization, where it is 2), followed by a tanh function. As an 
exception to the above notation, Batch-Norm is not applied to the first C64 layer in the 
encoder. All ReLUs in the encoder are leaky, with slope 0.2, while ReLUs in the decoder are not 
leaky. 

U-Net decoder CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128 

70×70discriminator C64_C128_C256_C512 

1×1discriminator 256×256discriminator C64-C128-C256-C512-C512-C512 C64-C128  

16×16discriminator C64-C128  
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